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Abstract

This article develops a modified version of the shrinking-core model accounting for the surface heterogeneity of solid particles. This
model can be primarily used as a shortcut method for estimating the dependence of the kinetic rates on the concentration of fluid reactants
and specifically the reaction order in the presence of a polydisperse solid mixture. This approach is tested numerically for model reactions in-
volving polydisperse systems and is applied to the dissolution of MnO2 in sulphuric acid solutions containing glucose as the reductant agent.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Dissolution kinetics of solid particles and leaching pro-
cesses are typical industrially relevant operations, for which
the structural properties of the solid particles influence sig-
nificantly the reaction evolution and its optimization [1,2].
As a consequence, scale-up of process units may be partic-
ularly difficult.

Dissolution kinetics depends on four major effects: (i) the
reaction kinetics sensu stricto and, specifically, the depen-
dence of the dissolution rates on the concentration of fluid
reactants; (ii) transport effects and mass transfer limitations;
(iii) the structural properties of particle ensembles expressed
by the particle distribution function [3–7]; (iv) the mechani-
cal/dissolution effects leading to particle fragmentation and
break-up induced either by the mechanical stirring or by the
dissolution kinetics itself [8,9]. The latter two effects depend
on the polydispersity of the mixture and influence the dyna-
mics of the particle distribution function during the process.

From these general observations, it follows that an accu-
rate description of dissolution phenomena and their scale-up
from laboratory to industrial equipment, cannot be grounded
solely on shrinking-core models, which intrinsically over-
look the polydispersity of the solid particle ensemble. Con-
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versely, structured models expressed by means of popula-
tion balances are one of the most powerful tools to approach
these processes [10]. For batch dissolution kinetics, popula-
tion balance models are expressed mathematically by means
of a non-linear integral–differential equation for the particle
distribution functionn(r, t):

∂n(r, t)

∂t
+ ∂

∂r
{ω[r, N3(t)]n(r, t)}

= −a(r)n(r, t)+
∫ ∞

0
a(ρ)b(r; ρ)n(ρ, t)dρ, (1.1)

wheren(r, t)dr is the number of solid particles with radius
betweenr andr+dr. The functiona(r) is the fragmentation
rate andb(r; ρ) expresses the number of fragments of radius
r generated from a particle of radiusρ. By definition, the
kernelb(r; ρ) satisfies the constraintb(r; ρ) = 0, for ρ < r
and the mass conservation condition [8,9]:

ρ3 =
∫ ρ

0
r3b(r; ρ)dr. (1.2)

The dissolution rateω[r, N3(t)], that is:

dr

dt
= ω[r, N3(t)], (1.3)

is a non-linear integral functional of the particle distribu-
tion functionn(r, t), since it may depend explicitly on its
third-order moment:

N3(t) =
∫ ∞

0
r3n(r, t)dr. (1.4)
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Nomenclature

a(r) fragmentation rate
b(r, ρ) number of fragments of radiusr generated

by a particle of radiusρ
ci molar concentration of theith fluid reactant
cs,0 ns,0/Vr
d distance function defined by Eq. (4.5)
k0 dissolution rate pre-factor
kd k0c

n1+n2
s,0

ni reaction order with respect of theith fluid
reactant

n(r, t) particle distribution function
ns,0 moles of solid reactant initially present
Nk kth order moment of the particle

distribution function
r radius
Ri internal core radius
Rmax upper bound for the particle radius of

a polydisperse mixture
Ro external particle radius
S particle surface
Seff effective particle surface
t time
T temperature
V particle volume
Vr reactor volume
x dimensionless radius
X conversion

Greek letters
α surface heterogeneity factor
β steepness factor
γi loading ratioci(0)/cs,0νi
θ dimensionless time
νi stoichiometric coefficient of theith

fluid species
φ(r;
Ri, Ro) modulation function, Eq. (3.6)
ω dissolution rate

The functional formω = ω[r, N3(t)] accounts for the de-
pendence of the dissolution rate on the concentration of the
fluid reactants within the fluid phase, under the hypothesis
of perfectly mixed conditions and is a straightforward con-
sequence of the stoichiometric constraints (see Section 4 for
further details). The dependence ofω on r is a consequence
of the interplay between the kinetics of dissolution and mass
transfer limitations [6].

The functional (non-linear integral–differential) form of
the population balance equation Eq. (1.1) indicates that it
is extremely difficult to decouple the kinetic effects from
the structural properties associated with mixture polydis-
persity and fragmentation dynamics. Consequently, the
estimation of all the parameters, functions and kernels en-

tering Eq. (1.1) should be based on physical approximations
aimed at simplifying the numerical approach, so as to re-
duce the problem to a series of subtasks that are easier to
tackle. An in-depth discussion of the numerical methods
for approaching population balance equations in the context
of aggregation, nucleation and break-up phenomena has
been developed by Kumar and Ramkrishna [11–13]. The
inverse problem of population balance models, that is the
mathematical approach aimed at extracting rate information
from transient particle size distribution measurements, has
been approached by Wright and Ramkrishna [14] for ag-
gregation kinetics and by Sathyagal et al. [15] for particle
break-up.

This article proposes a simple approach for the estimate
of reaction orders in dissolution kinetics. This issue is es-
sential in order to determine the functional dependence of
the kinetic rates on the concentration of the fluid reactants.

The method proposed is based on a two-layer shrinking-
core (TLSC) model, in which the effects of local surface
heterogeneity and polydispersity are “lumped” together into
a single parameter accounting for the increase of the sur-
face area. Such an increase may be a consequence either of
physical surface properties of solid particles or of particle
polydispersity.

Albeit the model is grounded on reasonable physical ap-
proximations of the particle surface structure (see Section 3
for details), its main goal is the reaction order estimate.
Therefore, this approach may become a useful tool com-
plementing the analysis of leaching processes by means of
structured models involving population balances. This ap-
proach is applied to the analysis of experimental data de-
riving from the dissolution of manganese oxide in an acid
medium. The article is organized as follows. Section 2 briefly
discusses the experimental set-up. Section 3 describes the
TLSC model, its physical origin and its range of application.
Throughout this article, we consider exclusively batch dis-
solution kinetics under the hypothesis that the fluid phase is
perfectly mixed. Section 4 addresses the problem of reaction
order estimate by means of the TLSC model. This prob-
lem is tackled by considering simulation results for polydis-
perse mixtures and, subsequently, the dissolution kinetics of
MnO2 particles in acid solutions in the presence of glucose.

2. Materials and methods

MnO2 is purchased by Sigma–Aldrich (60–230 mesh, pu-
rity 99%). Leaching tests were performed in jacketed cylidri-
cal vessels (borosilicate glass) (5 cm i.d.; 9 cm height), with
round bottom and upper opening for sample collection.

Leaching experiments were carried out under magnetic
stirring and thermal control was achieved through a ther-
mostatic bath employing a circulating pump (LT5 IKA
Labortechnik). The reductive leaching process was car-
ried out in sulphuric acid medium (H2SO4 96% ISO for
analysis, Carlo Erba Reagents) using glucose (�-d-glucose
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anhydrous, 96%, Sigma–Aldrich) as the reductant. The
reaction fulfills the following overall stoichiometry [16]:

C6H12O6 + 12MnO2 + 24H+

= 6CO2 + 12Mn2+ + 18H2O. (2.1)

The experiments were performed by adding 8 g MnO2 to
150 ml of solution at 90◦C, for several concentrations of the
reactants (glucose, sulphuric acid). Below 90◦C, the conver-
sion achieved after 40 h is too low to have any practical in-
terest. During the process, different samples of liquor-leach
containing solid particles were collected in order to analyze
the conversion.

Solid–liquid separation was performed by centrifugation
(Chermle Z380) for 10 min at speed 8000 min−1. Liquid
samples were diluted with a HNO3 solution in distilled wa-
ter (pH 2) and analyzed by an inductively coupled plasma
spectrophotometer (ICP Varian Liberty 150) to determine
the Mn concentration. Solid samples were washed with dis-
tilled water, dried at room temperature (
20◦C) and then
analyzed to determine their morphological and size prop-
erties. A morphoscopic and qualitative study of the solid
particles was performed by SEM-EDS analysis (Zeiss DSM
940A): solid samples were glued to aluminium stubs, coated

Fig. 1. SEM micrography of MnO2 particles: (a and b) initial particles before leaching; (c and d) aftert = 33 h at temperatureT = 90◦C in the presence
of an 100% surplus of glucose and sulphuric acid. The width of the white window embodied in each figure represents the reference length adopted in
each micrography and is given by: (a) 50�m; (b) 500�m; (c and d) 20�m.

in a vacuum chamber with a carbon evaporation source and
then analyzed.

3. Two-layer model

This section addresses the physical assumptions, the
mathematical formulation and the range of application of the
TLSC model.

For the sake of simplicity, let us assume two limiting
fluid reactants under kinetics-controlled conditions (i.e. no
limitations due to external mass transfer):

solid+ ν1A1(f )+ ν2A2(f )→ products. (3.1)

These assumptions can be argumented in view of the appli-
cation of this model to batch leaching of MnO2 particles,
which follows the overall stoichiometric balance Eq. (2.1)
(further details are discussed in Section 4).

In many cases of practical interest, solid non-porous
particles may exhibit surface heterogeneity properties, in-
duced by a random distribution of the orientations of the
exposed crystalline planes. This is the case of MnO2 parti-
cles, as depicted in Fig. 1a and b. As it regards dissolution,
the major effect of surface heterogeneity is to increase the
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Fig. 2. Schematic representation of a solid particle in the two-layer model.

wetted surface exposed to fluid reactants, thus modifying
the surface-to-volume ratio. As the reaction proceeds, sharp
edges smoothen out progressively and the external parti-
cles surface becomes more regular. This phenomenon is
depicted for MnO2 particles in Fig. 1c and d aftert = 33 h,
during a batch leaching experiment at constant temperature
T = 90◦C.

3.1. Model formulation

It follows from these observations that a very simple, yet
physically reasonable, model accounting for the aformen-
tioned properties can be based on the following assump-
tions: (i) particles are assumed to be spheres of radiusRo;
(ii) the geometrical surface heterogeneity is accounted for
by hypothesizing the presence of two layers (see Fig. 2 for
a schematic pictorial description): an internal core possess-
ing external radiusRi , characterized by a volume-to-surface
ratio typical of regular spherical particles:

V (r)

S(r)
= r

3
, (3.2)

and an external surface layer (Ri < r < Ro), characterized
by a lower volume-to-surface ratio:

V (r)

S(r)
= r

3α
, (3.3)

Fig. 3. (a) Behavior of the ratiorS(r)/3V (r) vs. r in the TLSC model atα = 3, Ri/Ro = 3/4, for several values of the steepness factorβ = 10−2,1,102.
(b) Conversion–time curves,(1−X(θ))1/3 vs. θ , for the TLSC model atα = 3, xi = 3/4, β = 10−2,1,102. The arrow indicates increasing values ofβ.

where the constant factorα > 1 is referred to as surface
heterogeneity factor.

The assumption of spherical particles dictates thatV (r) =
4πr3/3 for 0 ≤ r ≤ Ro. The two-layer description intro-
duces a discontinuity at the interface between the two lay-
ers, i.e. atr = Ri , which needs to be eliminated through
mathematical manipulations for a convenient analysis of the
model. This can be achieved by assuming for the surface
area scaling withr a convex average between the values
pertaining to the two different layers:

S(r) = 4πr2[(1 − φ(r;Ri, Ro))+ αφ(r;Ri, Ro)], (3.4)

averaged with respect to a smooth functionφ(r;Ri, Ro)

monotonically increasing withr and possessing the follow-
ing properties:

φ(r;Ri, Ro) =
{

0 for r < Ri

1 for r = Ro.
(3.5)

In this way, the transition between core and surface prop-
erties is modulated smoothly. A convenient choice for the
weighting functionφ can be the family ofc∞ compactly
supported functions defined by [17]:

φ(r;Ri, Ro)

=




0 for r ≤ Ri

exp

[
β+ β(Ro−Ri)

2

(Ro−r)2−(Ro−Ri)2

]
forRi < r ≤ Ro,

(3.6)

whereβ is a parameter, referred to as the steepness factor,
controlling both the steepness of the transition between core
and surface properties, and its localization aroundr = Ri .
Fig. 3a shows the behavior of the ratiorS(r)/3V (r) obtained
from Eqs. (3.4) and (3.6) for different values ofβ. For values
of β significantly greater than 1, the transition from core to
surface structure practically occurs for values ofr higher
thanRi , thus reducing the effective width of the external
layer.
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Let us consider the dissolution kinetics deriving from the
TLSC model, by first assuming that the fluid reactants are in
large excess and that the process is under kinetics-controlled
conditions. The balance equation for a generic solid particle
becomes:

ρs
dV (r)

dt
= −kdS(r). (3.7)

By substituting Eqs. (3.4) and (3.6) and by making the equa-
tion dimensionless through the definition of the dimension-
less variables:x = r/Ro, θ = tkd/ρsRo and φ̃(x; xi) =
φ(Rox;Ri, Ro), xi = Ri/Ro, Eq. (3.7) becomes:

dx

dθ
= −[1 + (α − 1)φ̃(x; xi)], (3.8)

the solution of which is:

θ =
∫ 1

x

dy

[1 + (α − 1)φ̃(y; xi)]
. (3.9)

Fig. 3b shows the dimensionless conversion–time curves1

(1 − X)1/3 versusθ , whereX = 1 − x3, obtained from
Eq. (3.9) for several values ofβ. The TLSC model has
been built so as to provide a crossover behavior in the
conversion–time curves: from surface-controlled shrinking,
enhanced by the increase in the surface area within the ex-
ternal region, i.e. forx > xi , to the core-controlled dissolu-
tion. These two regimes correspond to a linear scaling of the
conversion versus time, characterized by a slope equal toα

and 1, respectively. This phenomenon is evident for values
of β ≤ 1, whereas forβ � 1 the effects of surface het-
erogeneity become less pronounced. This is a consequence
of the fact that the effective region of surface heterogeneity
shifts towards higher values ofx beyondxi , as depicted in
Fig. 3a, so that the effective width of the external layer is
significantly reduced.

To sum up, the TLSC model contains three adjustable pa-
rameters,α, β andxi that modulate the effects of the particle
surface heterogeneity and the transition from internal (core)
to surface structure.

The analysis can be extented to the case where the fluid
reactants are not in large excess. In this situation, the dis-
solution rate depends explicitly on the conversion. For ex-
ample, let us suppose that the rate of dissolution (mass of
solid dissolved per unit time and unit wetted area) may be
expressed as:

ω(c1, c2) = −k0c
n1
1 c

n2
2 , (3.10)

whereci (i = 1,2) are the concentrations of the fluid reac-
tants andn1, n2 are positive exponents. The stoichiometric
balance associated with Eq. (3.1) dictates that:

ci(t) = cs,0[γiνi − νiX(t)], (3.11)

1 Throughout this article, we prefer to represent the conversion–time
curves as(1−X)1/3 versus time. This is due to graphical reasons, in order
to emphasize the crossover behavior occurring at short and intermediate
timescales, and the linear behavior characteristic of shrinking-core models
in reaction-controlled regime.

wherecs,0 = ns,0/Vr is the molar concentration of the solid
reactant referred to the reactor volume andγi = ci(0)/cs,0νi
(i = 1,2) account for the loading ratio of theith fluid
reactant to the solid. In the case of shrinking-core models the
conversion is expressed byX = 1 − x3, the dimensionless
time θ should be defined asθ = tk0c

n1+n2
s,0 /ρsRo and the

formal solution of the balance equation is given by:

θ =
∫ 1

x

{
2∏
i=1

[γiνi−νi(1−y3)]ni

}−1
dy

1 + (α − 1)φ̃(y; xi)
.

(3.12)

3.2. Application of TLSC: general observations

The understanding of dissolution phenomena and their
optimization in process units is intrinsically connected
to the development of structured models in which the
polydispersity of the solid particle ensemble and the
physico-chemical/mechanical processes (that is the inter-
play between dissolution and fragmentation) are explicitly
accounted for.

It follows from this general observation that, notwith-
standing its physical motivations, the exclusive use of
the TLSC model solely as a slightly more elaborate
shrinking-core model would be of limited practical and con-
ceptual usefulness. Consequently, the TLSC model should
be implemented within the main street of population bal-
ance models. In order to explore this point in more detail,
let us begin with an experimental observation. Fig. 7A
depicts2 several typical conversion–time curve for MnO2
particles obtained atT = 90◦C under different operating
conditions, i.e. different surplus3 of glucose and of sul-
phuric acid. As can be observed, the conversion–time curve
displays a crossover behavior similar to that characterizing
the TLSC model: to an initial linear behavior forX < X∗
(with X∗ 
 0.2 ÷ 0.5), an “almost” linear scaling, charac-
terized by a less steep slope, follows. This phenomenology
is due to a manifold of concurring phenomena: (i) the sur-
face structure of the solid particles (see Fig. 1); (ii) the
polydisperse nature of the solid particle mixture, (iii) frag-
mentation processes; (iv) kinetic effects deriving from the
consumption of limiting reactants.

All these phenomena find a mathematical description4 in
the population balance equation Eq. (1.1). The

2 A detailed discussion on the experimental conditions for MnO2 dis-
solution is developed in Section 4.

3 The concept of “surplus” of a fluid reactant is referred to its molar
content with respect to the stoichiometric loading, which corresponds
to a molar ratio of the fluid to solid reactant equal to the ratio of the
corresponding stoichiometric coefficients.

4 This observation holds true for the dissolution of homogeneous par-
ticles, as in the case considered in this article for pure MnO2. In the
case of ore leaching, a detailed mathematical formulation of the dissolu-
tion process may be more complex due to the presence of the reactant
and of inert solid. The spatial distribution of reactant crystallites within a
solid particle should be accounted for, e.g. by means of generalized grain
models.
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qualitative resemblance of the experimental and TLSC
model conversion–time curves (Fig. 3b and Fig. 7A) sug-
gests that TLSC model might be used for a lumped descrip-
tion of dissolution kinetics, in which model parametersα,
β andxi encompass surface properties of the solid particles
and/or polydispersity features, such as the variability of
the effective surface area with time during the dissolution
process.

In the presence of a significant distribution of fines,
either initially present or generated during the dissolu-
tion/fragmentation dynamics, the effects of polydispersity
on the overall quantities (such as conversion), can be ap-
proximated by means of a “mean” particle possessing sur-
face heterogeneity properties as described within the TLSC
model.

The intensive parameters (e.g. the reaction orders), which
are less sensitive to the structural properties of solid par-
ticles and of the particle distribution function, can be thus
estimated within the framework of the TLSC model, in a
fairly objective way, independently of the lumping approach
characterizing this approximation.

Specifically, the main goal of this article is to show
that the TLSC model may provide an accurate estimate of
the functional dependence of the dissolution rates on the
concentration of the fluid reactants. This is the subject of
Section 4.

4. Data analysis and results

This section addresses how the TLSC model can be ap-
plied for reaction order estimate, that is, for the identifica-
tion of the functional dependence of the dissolution kinetics
on the concentration of the fluid reactants. First, we formu-
late the problem and support the analysis with model results.
Subsequently, we apply this approach to the dissolution of
MnO2 particles.

4.1. Statement of the problem and model results

Let us consider a polydisperse solid mixture, by overlook-
ing the effects of fragmentation,5 i.e. is by assuminga(r) =
0 in Eq. (1.1) and by assuming a functional dependence of
the dissolution rateω given by Eq. (3.10). The overall con-
version is given by:

X(t) = 1 −
∫ ∞

0 r3n(r, t)dr∫ ∞
0 r3n0(r)dr

= 1 − N3(t)

N3(0)
, (4.1)

wheren0(r) = n(r, t = 0) is the initial particle distribution.
Due to the explicit dependence ofω on the concentration of
the fluid reactants, the dissolution rate becomes a non-linear

5 The inclusion of fragmentation processes can be straightforwardly
performed without any significant change in the present analysis oriented
towards reaction order estimate.

functional of the particle distribution function, through its
dependence on the third-order moment:

ω[r, N3(t)] = −k0c
n1+n2
s,0

2∏
i=1

[
γiνi − νi

(
1 − N3(t)

N3(0)

)]ni
= −kdω0[N3(t)]. (4.2)

Let us assume that the initial distribution is bounded from
above, i.e.n0(r) = 0 for r > Rmax. By introducing the
variablesx = r/Rmax, θ = tRmax/kd, Eq. (1.1) takes the
dimensionless form:

∂n(x, θ)

∂θ
+ ∂

∂x
{ω0[N3(θ)]n(x, θ)} = 0, (4.3)

where we have used the same notationn(x, θ) to indicate
the dimensionless particle distribution function depending
on the dimensionless variablesx andθ .

Let us consider a first-order reaction with respect toA1,
that isn1 = 1, n2 = 0, with ν1 = 1/12. This value ofν1
corresponds to the overall reaction Eq. (2.1), by identify-
ing A1 as glucose and by assuming that the dissolution rate
does not depend on the concentration of sulphuric acid. In
order to highlight the effects of polydispersity and the role
of fines, let us consider the following initial bimodal distri-
bution (Fig. 4):

n0(x)= Ax(1 − x)[exp(−a1(x − x1)
2)

+ c2 exp(−a2(x − x2)
2)], x ∈ [0,1], (4.4)

wherea1 = a2 = 103, x1 = 0.1, x2 = 0.8, c2 = 2 × 10−3

andA is an arbitrary normalization constant that does not
affect the conversion–time curves.

The bimodal nature of the initial mass distribution func-
tion x3n0(x) foresees the occurrence of a crossover behavior
in the conversion–time curves, Fig. 5, apparently similar to
that observed in Fig. 3b in the case of TLSC model and in
Fig. 7A for MnO2 dissolution. The origin of this crossover
phenomenon has no relation with the physical assumptions

Fig. 4. Normalized initial mass distributionx3n0(x) vs. x, Eq. (4.4)
(A = 103).
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Fig. 5. Conversion–time curve(1−X(θ))1/3 vs. θ for the model system
obtained in the presence of a first-order kineticsν1 = 1/12, starting from
the initial particle distribution Eq. (4.4): (�) γ1 = 1; (�) γ1 = 1.2; (�)
γ1 = 1.5; (�) γ1 = 2. Solid lines are the corresponding predictions of
the TLSC model forn1 = 1.

underlying the TLSC model, as it can be entirely attributed
to the polydispersity of the particle ensemble. In principle,
the behavior of the effective surface, induced by mixture po-
lidispersity, can be accounted for within the TLSC model by
means of the model expression Eq. (3.4) through a suitable
choice of the parametersα,β andxi . Besides, kinetic effects,
that is the influence of the functional form of the dissolution
rate, can be obtained through a quantitative analysis for an
objective6 parameter estimation. This is the reason why this
physical setting may be regarded as a valid test case in or-
der to check quantitatively the effective ability of the TLSC
model to estimate the order of reaction in the presence of a
continuous distribution of particle sizes.

It follows that parameter estimation should be performed
in such a way as to single out the kinetic effects, i.e. the func-
tional form of the dissolution rate, as much as possible. This
is the reason why we adopt a mixed regressive–predictive
optimization procedure. Let us suppose, we collect an en-
semble of experimental data curves for different values of
the loading ratioγ1 of the limiting reactant and let us take
one of the ensemble curve atγ1 = γ ∗

1 as the reference curve.
For any functional form of the dissolution rate, TLSC model
parameters are optimized in order to achieve the optimal re-
gression of the reference curve atγ ∗

1 (regression step). With
the value of the TLSC parameter thus obtained, the other
conversion–time curves are predicted (prediction step), and
kinetic parameters (e.g. the order of reaction) are optimized
by referring to the prediction properties forγ1 �= γ ∗

1 .
Specifically, the numerical test is performed as fol-

lows. Numerical data are generated through the solution
of Eq. (4.3) for different values of the loading ratio (γ1 =

6 In this context the wording “objective” refers to an estimate of the
kinetic rates indepedent of the biasing effects deriving from solid particle
polydispersity.

1,1.2,1.5,2.0) corresponding to stoichiometric loading
conditions (γ1 = 1) and to a surplus of 20, 50 and 100% of
the fluid reactant. Eq. (4.3) can be solved in closed form by
making use of the warped-time transformation developed in
[18]. The resulting conversion–time curves are depicted in
Fig. 5 and are used as synthetic “experimental” data. These
data are fitted by means of the TLSC model, by assuming
Eq. (3.10) withn2 = 0 as the kinetic model, for different
values of the order of reactionn1. The regression step pro-
ceeds as follows: for each value ofn1, the values of the
parametersα, β andxi , characterizing the TLSC model, are
estimated by means of standard optimization methods in
order to obtain the optimal regression against the synthetic
experimental data corresponding to 100% surplus (γ1 = 2).
The TLSC model with the value of the parameters thus ob-
tained (for each value ofn1) is used to predict the behavior
of the “experimental” conversion–time curve for the other
operating conditions (γ1 = 1, 1.2, 1.5).

The results of the regression (γ1 = 2) and of the predic-
tions (γ1 = 1, 1.2, 1.5) of the TLSC model are depicted in
Fig. 5 as solid lines forn1 = 1. For n1 = 1, that is, for
the correct value of the reaction order, the TLSC model is
able to predict accurately the overall reaction evolution for
all the operating conditions considered.

It is useful to obtain a quantitative representation of the
distance between the “experimental” data and TLSC model
predictions as a function ofn1. This is depicted in Fig. 6,
by expressing the distance as:

d(n1; γ1)

=
{

1

θmax

∫ θmax

0
[yexp(θ; γ1)− yTL(θ; n1, γ1)]

2 dθ

}1/2

,

(4.5)

whereyexp(θ; γ1) = (1 − Xexp(θ; γ1))
1/3 are the “experi-

mental” data of the conversion–time behavior for a valueγ1
of the loading ratio, andyTL(θ; n1; γ1) the corresponding

Fig. 6. Distance functiond(n1; γ1) vs. n1 for different loading ratios: (a)
γ1 = 1; (b) γ1 = 1.2; (c) γ1 = 1.5.
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predictions of the TLSC model for the same loading ratio and
for a valuen1 of the reaction order. The model predictions
are obtained as discussed above, that is by estimating model
parameters from the caseγ1 = 2.

The distance functiond(n1; γ1) defined by Eq. (4.5) con-
tains an additional parameterθmax corresponding to the time
windows over which the comparison is performed. The value
of θmax is chosen equal to 15, 25 and 35 forγ1 = 1, 1.2
and 1.5, respectively. As can be observed from Fig. 6, the
distance function shows a local and absolute minimum for
n1 = 1, that is at the correct value of the reaction order
n1 corresponding to the synthetic “experimental” data. This
is a clear quantitative indication that the TLSC model can
be successfully applied as a shortcut approach for identi-
fying the functional dependence of the dissolution rate on
the concentration of the fluid reactants in the presence of a
polydisperse ensemble of solid reacting particles.

4.2. Application to the MnO2 dissolution kinetics

The recovery of metals and particularly of manganese
from mineral ores is an important industrial issue. A series
of hydrometallurgical processes has been developed both
with and without reducing agents. One of the processes de-
veloped makes use of sacchariferous reductant (glucose in
the present analysis). Recently, bioleaching of manganese by
iron-oxidizing bacteria have been addressed [19,20]. Leach-
ing kinetics of manganiferous ore (pirolusite) have been con-
sidered by several authors [21,22].

Manganese extraction using carbohydrates as reducing
agents consists of a complex network of chemical reactions
involving partially oxidized products derived from carbohy-
drate degradation in acidic media. The manifold of inter-
mediates and their variability with carbohydrate source led
to the formulation of a preliminary kinetic model consider-
ing the overall chemical reaction Eq. (2.1), thus overlook-

Fig. 7. (A) Influence of sulphuric acid concentration on the dissolution of MnO2. Conversion–time curves(1−X(t))1/3 vs. t . Set (a) refers to stoichiometric
loading conditions of glucoseγ1 = 1, (�) to stoichiometric loading of sulphuric acidγ2 = 1 and (�) to 30% surplus of sulphuric acidγ2 = 1.3. Set (b)
refers to 50% glucose surplusγ1 = 1.5, (�) to stoichiometric loading of sulphuric acidγ2 = 1 and (�) to 50% surplus of sulphuric acidγ2 = 1.5. (B)
Influence of glucose concentration on the dissolution of MnO2. Conversion–time curves(1 − X(t))1/3 vs. t : (�) γ1 = 1; (�) γ1 = 1.3; (�) γ1 = 1.5;
(�) γ1 = 2. Solid lines are the prediction of the TLSC model forn1 = 1.2.

ing all the possible intermediate products and reactions. A
shrinking-core model with a variable activation energy (the
activation energy is assumed to be a function of the overall
conversion) was developed in [23]. This model is able to fit
successfully the experimental data of manganese ore leach-
ing obtained at different operating conditions [24], albeit the
functional form of the dissolution rate is rather complex and
the model contains many adjustable parameters.

A thorough understanding of ore leaching kinetics is
made complex by the structural properties of the particles
and by the spatial distribution of MnO2 crystallites within
the amorphous solid matrix. In order to achieve a better
understanding of the kinetics underlying the reaction de-
scribed by Eq. (2.1), it is useful to consider the leaching
process of pure MnO2 particles. The reaction is carried out
in acidic medium and glucose is used as the reducing agent.
The overall stoichiometry of the reaction is described by
Eq. (2.1).

This section analyzes the kinetics of this reaction by ap-
plying the TLSC model for the estimate of the functional
dependence of the dissolution rate on glucose and sulphuric
acid concentrations. We indicate with subscript “1” glucose
and with subscript “2” sulphuric acid, so thatγ1 is the load-
ing ratio of glucose to the solid reactant.

Let us first consider the influence of sulphuric acid. Ex-
perimental data indicate that the overall dissolution rate de-
pends very weakly on the concentration of H2SO4. Fig. 7A
shows the experimental results atT = 90◦C for several
loading conditions: under stoichiometric loading for glucose
(γ1 = 1), by keeping sulphuric acid under stoichiometric
loading (γ2 = 1) and in the case of a 30% surplus (γ2 =
1.3) (data set a); for 50% glucose surplus (γ1 = 1.5), under
stoichiometric (γ2 = 1) and 50% surplus (γ2 = 1.5) of sul-
phuric acid (data set b). As can be observed (experimental
data sets a and b in Fig. 7A), a surplus of sulphuric acid, the
other operating parameters being fixed, does not increase
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the overall conversion so that, for pure MnO2, it can be
reasonably assumed that the dissolution rate is independent
of the concentrationc2 of H2SO4.

The influence of glucose on the overall reaction kinetics is
more pronounced (Fig. 7B): an increase of the glucose load-
ing ratioγ1 speeds up the overall conversion, thus indicating
that the dissolution rate depends on glucose concentration.

Data analysis has been performed following the same pro-
cedure outlined in the previous subsection: model parame-
ters of TLSC are optimized with respect to the experimental
data set corresponding to a reference case, corresponding
to the stoichiometric loading conditions (γ1 = 1, γ2 = 1)
and, subsequently, the TLSC model is applied to predict the
conversion–time curves corresponding to the other operat-
ing conditions.

For the dissolution rate we assume a simple functional
dependence on glucose concentration:

ω(c1, c2) = −k0c
n1
1 , (4.6)

wheren1 is the parameter to be estimated. Fig. 8 shows
the behavior of the distance functiond(n1; γ1), Eq. (4.5),
versusn1 for γ1 = 1.3 andγ1 = 2. Forγ1 = 1.3 (curve a of
Fig. 8), there exists a broad range of values 1< n1 < 1.6
for which the predictions of the TLSC model are in accept-
able agreement with the experimental data. Conversely, the
case of a 100% surplus of glucose (curve b) of Fig. 8 clearly
indicates the occurrence of a local and absolute minimum
at n1 = 1.2. The solid lines depicted in Fig. 7B refer to
the TLSC model prediction in the presence of a dissolu-
tion rate given by Eq. (4.6) withn1 = 1.2 (the values of
the other parameters areα = 3, β = 1, ρsRmax/k0c

1.2
s,0 =

7.8 h, xi = 0.85). The agreement is satisfactory and
this is a further confirmation of the ability of TLSC
model to extract quantitative information about dissolution
rates.

Fig. 8. Distance functiond(n1; γ1) vs. n1 for different loading ratios in
the case of MnO2 dissolution: (a)γ1 = 1.3; (b) γ1 = 2.

5. Concluding remarks

The aim of this article is to develop a simple method for
the estimate of the functional dependence of the dissolution
rate on the concentration of the fluid reactants, by means of a
modified version of the shrinking-core model, i.e. the TLSC
model. TLSC model has been developed to provide a simple
approach to experimental batch dissolution kinetics, charac-
terized by two almost linear slopes in the conversion–time
curves.

TLSC is a fairly flexible model characterized by three ad-
justable parameters,α, β andxi , related to the surface het-
erogeneity of solid particles. The model can be successfully
applied to mimic the overall kinetic behaviour during the
dissolution of polydisperse particle mixtures.

The main results of this article can be summarized as
follows: (i) TLSC model is a simple model accounting for
local surface heterogeneity of solid particles; (ii) this model
provides a flexible tool for estimating the order of reaction
in dissolution kinetics.

In this framework, a conceptual observation should be
pointed out neatly. Albeit the analysis performed either on
model systems or experimental data indicate that TLSC is
able to predict the overall reaction kinetics in a variety of
conditions involving polydisperse systems, we believe that
its main application should be limited to a processing tool
for estimating the reaction orders and more generally the
functional form of the dissolution rate. The latter application
of TLSC model should be performed in close connection
with structured models for the evolution of a polydisperse
ensemble of solid particles which encompass the main phys-
ical properties (polydispersity, etc.) and phenomenologies
(interplay between dissolution and fragmentation) char-
acterizing leaching processes in laboratory and industrial
equipments.

Following this approach, the TLSC model has been ap-
plied to the dissolution kinetics of MnO2 particles, reveal-
ing that the dissolution rate is substantially independent of
the concentration of sulphuric acid and can be modeled by
means of a fractional-order kinetics withn1 = 1.2 with re-
spect to glucose. This is a first step towards the develop-
ment of a structured model for MnO2 and manganiferous
ore dissolution, that will be developed elsewhere by means
of population balance equations.
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